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ABSTRACT: The disaggregation of output from Probabilistic Seismic Hazard Analysis (PSHA) has become
a frequently used tool in recent years. The output from this procedure allows one to understand the condi-
tional probability distribution of the earthquake scenarios that contribute to seismic hazard at a specified 
ground motion level. In this paper, the concept of disaggregation is extended to Probabilistic Seismic Demand
Analysis (PSDA)—a performance-based engineering procedure that combines ground motion hazard infor-
mation with probabilistic structural response. Disaggregation of this analysis provides the distribution of
ground motion intensities contributing to exceedance of a given structural response level. This information
provides additional insight to the engineer, and is also useful for verifying that a sufficient range of ground
motion levels has been considered the assessment of a structure. PSDA disaggregation is combined with a
PSHA disaggregation to determine the distribution of Magnitude-Distance pairs (i.e., scenarios) that contrib-
ute to the exceedance of a given structural response level. A procedure is also presented for disaggregation 
with a vector-valued measure of ground motion intensity. The disaggregation methodology is outlined and an
example analysis is performed to demonstrate the information provided.  
 
 

1 INTRODUCTION 

The disaggregation of output from Probabilistic 
Seismic Hazard Analysis (PSHA) has become a fre-
quently used tool in recent years. The output from 
this procedure allows one to understand which earth-
quake scenarios contribute most to seismic hazard at 
a specified return period. This understanding is in 
turn valuable when selecting ground motion re-
cordings to use in analyzing a structure. 

In this paper, the concept of disaggregation is ex-
tended to Probabilistic Seismic Demand Analysis 
(PSDA). The PSDA procedure couples PSHA analy-
sis with probabilistic estimates of structural response 
to obtain the mean annual frequency of exceeding 
given response levels. The result is analogous to the 
PSHA result, but with mean annual frequencies pro-
vided for structural response levels, rather than 
ground motion intensity levels. This procedure is 
used by the Pacific Earthquake Engineering Re-
search (PEER) Center (Cornell and Krawinkler 
2000), and forms the basis for the SAC methodology 
(Cornell et al. 2002), among other applications. 

Disaggregation of the Probabilistic Seismic De-
mand Analysis provides additional information 

about the causal events relating to a given structural 
performance levels, which is useful for the same rea-
sons that disaggregation of PSHA is useful, but is 
more focused on the output of direct structural inter-
est. 

The disaggregation methodology is presented, 
along with example results. Implications of the re-
sults are discussed. 

2 DISAGGREGATION OF PSHA 

The primary output from a Probabilistic Seismic 
Hazard Analysis is the mean annual rate of exceed-
ing specified levels of ground motion intensity. The 
disaggregation of this result answers the question, 
“given that an earthquake ground motion with a 
specified level of intensity has occurred, what is the 
distribution of events that caused this?” Typically 
the parameters used to define an event are the Mag-
nitude (M) and Distance (R) of the earthquake, and 
the ε value of the ground motion (a measure of the 
number of standard deviations by which an observed 
logarithmic spectral acceleration differs from the 
mean logarithmic spectral acceleration predicted 
from an attenuation relationship).  If the ground mo-
tion intensity is termed an Intensity Measure, and 



denoted IM, then mathematically, this can be ex-
pressed as: 
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Although the underlying M, R, and ε random vari-
ables are continuous, they are typically represented 
by discrete distributions in disaggregation, by divid-
ing the range of possible values into bins, and pro-
viding the probability that M, R, and ε fall into each 
bin. The procedure for calculating this distribution is 
provided in detail elsewhere (McGuire 1995, 
Bazzurro and Cornell 1999).Note that the distribu-
tion of M, R, and ε can be provided conditioned on 
the intensity measure either equaling or exceeding x, 
although it is straightforward to convert between the 
two (Bazzurro 1998, p195).  

Disaggregation is a standard output of many 
PSHA analyses, such as the U.S. Geological Survey 
hazard maps, (2002). Examples of this disaggrega-
tion are shown in Figures 1 and 2. The disaggrega-
tion comes from a PSHA at a site in Van Nuys, CA, 
near Los Angeles. The IM considered is spectral ac-
celeration at a period of 0.8 seconds (denoted 
Sa(0.8s)). This disaggregation is a function of the 
site considered and the period of spectral accelera-
tion. Additionally, the disaggregation is a function of 
the level of spectral acceleration considered, as illus-
trated by the variation between Figures 1 (for 
Sa(0.8s) = 0.3g) and Figure 2 (for Sa(0.8s) = 1.2g): as 
the ground motion intensity increases, events at 
nearby distances begin to dominate the disaggrega-
tion. 

The disaggregation provides additional informa-
tion to the seismologist and structural engineer about 
the distribution of events contributing to seismic 
hazard. This is useful, for example, for identification 
of representative earthquake ground motion records 
to use in performing dynamic analysis of a structure. 
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Figure 1: Distribution of (Magnitude, Distance) pairs contribut-
ing to spectral acceleration of 0.3g at a period of 0.8s. 
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Figure 2: Distribution of (Magnitude, Distance) pairs contribut-
ing to spectral acceleration of 1.2g at a period of 0.8s. 

3 PROBABILISTIC SEISMIC DEMAND 
ANALYSIS 

The goal of Probabilistic Seismic Demand Analysis 
is to compute the mean annual rate of exceeding 
given levels of structural response. This is done by 
integrating probabilistic structural response over all 
potential levels of ground motion intensity. The in-
formation is used by, for example, the Pacific Earth-
quake Engineering Research Center for perform-
ance-based assessment of seismic response. In the 
equations below, following PEER practice, the 
ground motion intensity is termed an Intensity 
Measure, or IM, and the structural response is 
termed an Engineering Demand Parameter, or EDP. 
Using this terminology, the integral defining the 
mean annual frequency of exceeding a given level of 
EDP is calculated as numerically as follows: 

all 
( ) ( | ) ( )

i

EDP i IM i
x

z P EDP z IM x xλ λ= > = ⋅ ∆∑  (2) 

where λIM(xi) is the mean annual frequency of ex-
ceeding a given IM value xi (commonly referred to 
as the ground motion hazard curve) and ∆λIM(xi) = 
λIM(xi) - λIM(xi+1) is approximately the annual fre-
quency of  IM = xi. The term P(EDP>z|IM=xi) repre-
sents the probability of exceeding a specified EDP 
level, z,  given a specified level of IM, x. The term, 
λEDP(z) is the mean annual frequency of exceeding a 
given EDP value z, sometimes referred to as the drift 
hazard curve. The details of this calculation are dis-
cussed elsewhere (e.g., Bazzurro et al. 1998). 

4 DISAGGREGATION OF PSDA  

Given the result of Equation 2, disaggregation will 
provide the distribution of IM values contributing to 



exceeding the given structural response level z. This 
is done using a Bayes’ Rule calculation: 
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 (3) 
where IM has been represented by a discrete distri-
bution rather than its true underlying continuous dis-
tribution, as was done in Equation 1 for M, R, and ε. 
This result is a simple extension to the calculation of 
Equation 2: the numerator of Equation 3 is equal to 
the term being summed in Equation 2. Thus, while 
using a computer to sum the 
P(EDP>z|IM=xi)∆λIM(xi) terms, the user simply 
needs to copy each term to an individual element in 
an array. After completing the summation, the array 
is divided by λEDP(z). The result is the disaggrega-
tion value of Equation 3. The ease of calculation of 
this information adds to its utility.  

5 APPLICATION 

To demonstrate the results of this procedure, and ex-
ample analysis is performed. The ground motion In-
tensity Measure used is Spectral Acceleration at the 
first mode period of the structure (Sa(T1)), and the 
Engineering Demand Parameter of interest is the 
maximum interstory drift ratio (the largest interstory 
drift ratio seen at any floor of the structure during 
the earthquake). 

5.1 Description of the structure  
The structure analyzed is the transverse frame of a 
seven-story reinforced-concrete moment-frame 
building located in Van Nuys, CA, which is serving 
as a test-bed for PEER research. The model has a 
first-mode period of 0.8 seconds, and contains 
nonlinear elements that degrade in strength and 
stiffness, in both shear and bending (Pincheira et al. 
1999). Forty historical earthquake ground motions 
from California are used to analyze structural re-
sponse. These records are scaled to several levels of 
spectral acceleration, as see in Figure 3. These re-
sults are then used to estimate the probabilistic re-
sponse of the structure, at a given IM level, 
P(EDP>z|IM=xi). 
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Figure 3: Spectral acceleration at 0.8s versus structural re-
sponse, for a suite of earthquake ground motions scaled to sev-
eral levels to spectral acceleration, and the estimated median 
response versus spectral acceleration.. 

5.2 Ground motion hazard 
We consider the ground motion hazard at Van Nuys, 
CA, the site of the test structure. The ground motion 
hazard curve is shown in Figure 4. From this curve 
we can obtain ∆λIM(xi), which is needed for the 
PSDA procedure. 
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Figure 4: Probability of exceedance of spectral acceleration at 
0.8s for Van Nuys, CA.  

5.3 PSDA results 
The information available from Figures 3 and 4 are 
combined using Equation 2 to compute the drift haz-
ard curve λEDP(z). The result is shown in Figure 5. 
From this plot we can obtain the mean annual rate of 
exceedance (the y-axis value) corresponding to a 
specified structural response level (the x-axis value). 
For example, the onset of significant structural dam-
age for this structure is estimated to occur at a 
maximum interstory drift ratio of 0.75%, which we 
see to have a mean annual rate of exceedance of 
0.045. Or if we are interested in a maximum in-



terstory drift ratio of 3%, we see that the mean an-
nual rate of exceedance is 0.009.  
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Figure 5: Mean annual rate of exceedance of maximum in-
terstory drift ratio for the example structure at Van Nuys, CA.  

5.4 Disaggregation of PSDA results 
Disaggregation of the drift hazard curve shown in 

Figure 5 is performed using Equation 3. First, we 
consider the disaggregation for exceeding a maxi-
mum interstory drift ratio of 0.75% (corresponding 
to the onset of significant structural damage). The 
distribution of Sa(T1) values contributing to this re-
sponse are shown in Figure 6. We see that a large 
range of Sa(T1) values contribute to this response 
level: large Sa(T1) values contribute because they 
tend to cause large responses in the structure, and 
smaller Sa(T1) values contribute because even 
though they cause lower EDP levels on average, 
they still have a probability of exceeding  0.75% and 
they occur much more frequently (i.e., Figure 4). 
Note that the Sa(T1) value with mean annual rate of 
exceedance of 0.045 (Figure 5) is about 0.059g 
(from Figure 4) which is near the mode of the distri-
bution in Figure 6. 

In Figure 7, we see the distribution of Sa(T1) val-
ues contributing to an EDP of 3%. These Sa(T1) val-
ues are larger than those causing an EDP of 0.75%, 
as might be expected. Disaggregation now quantifies 
the difference.  
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Figure 6: Distribution of Sa(T1) values contributing to ex-
ceedance of 0.75% maximum interstory drift ratio. 
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Figure 7: Distribution of Sa(T1) values contributing to ex-
ceedance of 3% maximum interstory drift ratio. 

5.5 Using disaggregation to verify the limits of 
integration 

This disaggregation result can also be used to ver-
ify that a sufficient range of IM values was inte-
grated over in order to compute the drift hazard 
curve. When performing the numerical integration of 
Equation 2, the range of ground motion intensities 
(IMs) should be chosen to capture all of the ground 
motion levels that contribute to the structural re-
sponses of interest. The lower bound on IM should 
be chosen such that the small ground motions ex-
cluded do not cause significant response in the struc-
ture. The upper bound on IM should be chosen such 
that the excluded stronger records are exceedingly 
rare, and thus do not contribute to the response of 
the structure.  

In the example presented here, the range of Sa(T1) 
values was 0.1g to 5.0g. But if a range of 0.1g to 2g 
had been used instead, the result would be an under-
estimation of the mean annual rate of exceeding 
some levels of structural response. This can be 
clearly seen when performing disaggregation of the 



drift hazard. In Figure 8, we see the distribution of 
Sa(T1) values given EDP>3%, when this reduced 
range of integration is used. The right tail of the dis-
tribution is missing because Sa(T1) values larger than 
2g were not included in the range of integration. 
This is very clear when examining Figure 8, but 
would not be obvious without this disaggregation re-
sult. After identifying the problem in Figure 8, an 
engineer could then repeat the drift hazard calcula-
tion with an appropriate range of IM values, and ver-
ify that the disaggregation looks like Figure 7, rather 
than Figure 8. 
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Figure 8: Distribution of Sa(T1) values contributing to ex-
ceedance of 0.75% maximum interstory drift. Only Sa(T1) val-
ues between 0.1g to 2g were used to compute the PSDA, illus-
trating the effect of using too small of a range of IMs.  

6 NESTED DISAGGREGATIONS 

The disaggregation of PSDA results provides the 
distribution of Sa(T1) values given EDP>x. For each 
of these Sa(T1) values, it is possible to use the PSHA 
disaggregation to find the conditional distribution of 
M, R, and ε. By nesting these disaggregations, it is 
possible to obtain the earthquake events contributing 
to exceedance of a specified EDP level.  

The following equation depends upon Sa(T1) be-
ing sufficient for prediction of EDP with respect to 
M, R, and ε (i.e., given knowledge of Sa(T1), knowl-
edge of M, R, and ε does not provide further infor-
mation about the structural response, EDP). The idea 
of sufficiency is described by Luco and Cornell 
(2004) who verify approximate sufficiency of Sa(T1) 
with respect to M and R. However, Sa(T1) is not suf-
ficient with respect to ε (Baker and Cornell 2004b), 
and so this simple nested disaggregation procedure 
is only valid for M and R. In the case of a variable 
such as ε that is not sufficient, a nested disaggrega-
tion is possible, but the computation is more diffi-
cult. 

Under the sufficiency condition, the distribution 
of M and R, given EDP>z can be calculated using 
this simple form of the Total Probability Theorem: 

all 
  ( |i
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The first factor in the summation comes from Equa-
tion 1 (after simply removing ε from the disaggrega-
tion). The second factor comes from Equation 3. The 
disaggregation of M and R for the example problem 
is shown in Figure 9, conditioned on EDP>0.75%.  
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Figure 9: Distribution of (Magnitude, Distance) pairs contribut-
ing to exceedance of 0.75% maximum interstory drift. 

It is illustrative to compare the disaggregation of 
Figure 9 to earlier disaggregation results. From Fig-
ure 6, we see that the event EDP>0.75% is caused 
primarily by Sa(T1) values between 0.3g and 1.2g. 
The PSHA disaggregation at these levels of Sa(T1) 
are given in Figures 1 and 2. The disaggregation of 
Equation 4 has incorporated an average of all of the 
disaggregations of Sa(T1), weighted by the contribu-
tion of Sa(T1) to the probability of exceedance of the 
EDP level. Thus, it is reasonable that the PSDA dis-
aggregation of Figure 9 looks similar to an average 
of the PSHA disaggregations of Figures 1 and 2. 
These conclusions are of course site specific. 

7 GENERALIZATION OF PSDA 
DISAGGREGATION TO A VECTOR-
VALUED IM 

The disaggregation procedure of Equation 3 only 
considers the case where the Intensity Measure con-
sists of a single parameter. But recent work has 
shown the benefit of “vector-valued” Intensity 
Measures consisting of more than one parameter 
(Baker and Cornell 2004a, b). For this case, the dis-
aggregation procedure is easily generalized: 
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where P(EDP>z| IM1=xi, IM2=yk) is a vector-based 
probabilistic EDP prediction, and ∆λIM(xi, yk) is a 
vector-valued hazard analysis result. The term 
λEDP(z) is the drift hazard curve calculated using the 
vector-valued IM procedure. The calculation of these 
terms is discussed in detail by Baker and Cornell 
(2004a). The disaggregation is generalized to Inten-
sity Measures consisting of more than two parame-
ters in the same way. 

Now the disaggregation output will be a matrix of 
probabilities corresponding to the probability that a 
set of IM parameters is that which caused the given 
EDP level to be exceeded.  

An example result is shown in Figure 10. This is 
the disaggregated drift hazard for the same structure 
as used in the previous examples, but using a vector-
valued IM consisting of Sa(T1) and ε as proposed by 
Baker and Cornell (2004b). This is the same ε value 
that arose earlier in discussions of PSHA disaggre-
gation. It should be noted that the ∆Sa(T1) and ∆ε in-
tervals in Figure 10 are quite small. This was done to 
clearly illustrate the shape of the density function, 
but in general it is not necessary to have such fine 
interval spacing. 

It should be noted that the disaggregation is 
dominated by positive ε values, especially when 
paired with large Sa(T1) values. This is because the 
ground motion hazard is increasingly dominated by 
positive ε values as Sa(T1) increases. Large Sa(T1) 
values and negative ε values cannot occur simulta-
neously, and thus they cannot contribute to the drift 
hazard. Baker and Cornell (2004b) have shown, 
however, that large positive ε values tend to be asso-
ciated with comparatively benign non-linear re-
sponse amplitudes (for the same Sa(T1) value). 

The drift hazard disaggregation provides special 
insight into the effect of including ε in an intensity 
measure. The disaggregation procedure may also 
provide insight regarding the use of future candi-
dates for improved intensity measures. 

 
Figure 10: Distribution of (Sa(T1), ε) pairs contributing to ex-
ceedance of 3% maximum interstory drift. 

8 CONCLUSIONS 

The principle of disaggregation of Probabilistic 
Seismic Hazard Analysis has been extended to dis-
aggregation of Probabilistic Seismic Demand Analy-
sis. The calculation is made using Bayes’ Rule, and 
is seen to be quite simple. 

Despite its simplicity, the information produced 
is useful to the engineer. The range of ground mo-
tion intensities contributing to a given level of struc-
tural response is available in a simple visual display. 
Further disaggregation allows the engineer to under-
stand the earthquake sources which contribute to ex-
ceedance of a given response—a result which is 
likely not intuitive otherwise. The disaggregation 
also allows the engineer to visually verify that a suf-
ficient range of ground motion intensity levels were 
included in the analysis, which is a check not easily 
available otherwise. 

Because of the simplicity of calculation, and the 
potential benefit of this knowledge, engineers are 
encouraged to calculate the disaggregation when 
performing Probabilistic Seismic Demand Analysis. 
This will provide increased understanding of the 
earthquake motions and events contributing to re-
sponse, without requiring significantly more effort. 
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