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ABSTRACT7

The intensity of an atmospheric river (AR) is only one of the factors influencing the damage it8

will cause. We use random forest models fit to hazard, exposure, and vulnerability data at different9

spatial and temporal scales in California to predict the probability that a given AR event will10

cause flood damage, as measured by National Flood Insurance Program (NFIP) claims. We first11

demonstrate the usefulness of data-driven models and interpretable machine learning to identify12

and describe drivers of AR flood damage. Hazard features, particularly measures of AR intensity13

such as total precipitation, increase the probability of damage with increasing values up to a14

threshold point, after which the probability of damage saturates. While hazard is generally the most15

important risk dimension across all models, exposure and vulnerability contribute up to a third of the16

explanatory power. Exposure and variability features generally increase the probability of damage17

with increasing values, apart from a few instances which can be explained by physical intuition,18

but tend to affect the probability of damage less for the largest AR events. Comparisons between19

random forest models at different spatial and temporal scales show general agreement. We then20

examine limitations inherent in publicly available exposure, vulnerability, and loss data, focusing21

on the difference in temporal resolution between variables from different risk dimensions and22

discrepancies between NFIP claims and total flood losses, and describe how those limitations may23
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affect the model results. Overall, the application of interpretable machine learning to understand24

the contributions of exposure and vulnerability to AR-driven flood risk has identified potential25

community risk drivers and strategies for resilience, but the results must be considered in the26

context of the data that produced them.27

INTRODUCTION28

Flooding is the most common and costly natural disaster that Americans face. Climate change29

has already increased the frequency and severity of floods; of the 41 billion-dollar flood disasters30

in the United States since 1980, 18 have occurred in the past decade (NOAA NCEI 2023). Floods31

become disasters based on not only the intensity of the hazard, but also interactions with the32

landscape, infrastructure, and communities at a particular location. In order to characterize flood33

risk, we rely on the well-established definition that risk is the product of three dimensions: hazard,34

exposure, and vulnerability. Hazard includes the intensity of the atmospheric event as well as35

environmental factors that could mediate or amplify flooding, such as impervious land cover or wet36

antecedent conditions. Exposure represents the people and buildings who experience the hazard,37

and vulnerability quantifies the ability of those people and buildings to withstand the hazard. All38

three risk dimensions must be accounted for in order to build models of flood damage that are39

both accurate (able to predict the magnitude of damage expected from a given storm event) and40

interpretable (able to determine which risk factors contributed most to damage during that event).41

Flood damage can be modeled using either a process-based or a data-driven approach. Process-42

based models start with the driving hydroclimatic conditions and simulate the physical processes43

from streamflow and inundation to damage and loss (e.g., FEMA (2006)). Most process-based44

models in the literature stop at loss prediction, though, and do not extend their analysis to quantify45

the drivers of loss. Data-driven models approach the problem from the opposite direction, starting46

with instances when impacts were observed and working backwards to empirically estimate the47

factors that are most predictive of impact (Solomatine and Ostfeld 2008). A data-driven model can48

take many forms, ranging from ordinary least squares regression to complex machine learning (ML)49

and artificial intelligence (AI) models. ML models have increased in popularity for assessment50
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of flood hazard (Sadler et al. 2018; Mobley et al. 2021) and flood damage (Wagenaar et al. 2017;51

Szczyrba et al. 2021) because of their high predictive accuracy and the increased availability of52

data for fitting the models.53

However, there are two main limitations in existing ML models for flood risk assessment. First,54

the increased predictive accuracy of more complex model forms comes at a price of decreased model55

interpretability. Interpretability is especially important in a flood risk context where knowing why56

the model produced a certain outcome matters as much as or more than what the outcome was.57

This limitation has been partially addressed through a suite of tools that fall under the umbrella of58

“interpretable ML” (Molnar 2023), all developed with the goal of improving the degree to which59

a human can understand the cause of a data-driven model decision. While some researchers have60

incorporated interpretable ML results in their flood risk assessments (e.g., Stein et al. (2021)), the61

practice is not widespread. Second, previous research has shown that data-driven models for flood62

risk assessment are sensitive to the spatial resolution of the data (Komolafe et al. 2018; Pollack63

et al. 2022) and that differences in temporal resolution across predictor variables can skew results64

(Mobley et al. 2021). Very few studies have examined the effect of spatial or temporal resolution on65

model interpretability results, and to our knowledge none have considered both factors in tandem.66

In this paper, we build random forest (RF) classification models to predict the likelihood of67

flood damage due to atmospheric rivers (ARs) in California at different spatial and temporal scales.68

ARs are the primary drivers of flood risk in the western US, associated with extreme precipitation69

(Lamjiri et al. 2017), hydrologic floods (Konrad and Dettinger 2017), and economic impacts70

(Corringham et al. 2019). We create an extensive dataset with over forty predictor variables71

representing hazard, exposure, and vulnerability. We then use interpretable ML to explore the72

contributions of these variables to the prevalence of insurance claims from the National Flood73

Insurance Program (NFIP). Our RF models quantify the value of including information about74

community-level exposure and social and infrastructural vulnerability in models of AR-driven75

flood damage and identify nonlinear threshold points and variable interactions that can guide76

potential resilience strategies. This paper also makes a more general methodological contribution77
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to the literature on ML in flood risk by comparing predictive accuracy and model interpretability78

results from RF models created at multiple spatial and temporal scales. We offer a perspective on79

the benefits and limitations of existing publicly available exposure, vulnerability, and loss data, and80

conclude by proposing avenues of work to improve future data-driven models of both flood risk81

and flood risk drivers.82

DATA83

Response Variable84

The response variable of interest is a binary indicator of whether or not an AR storm caused85

flood damage in a specific geographic unit (county or census tract). We define a damaging86

AR event as one that causes flood insurance claims to be submitted by a policyholder in the87

Federal Emergency Management Agency (FEMA) National Flood Insurance Program (NFIP)88

(FEMA 2023b). We include denied claims and claims below the policy deductible (zero payout)89

in our analysis, assuming a filed claim indicates that the policyholder experienced some negative90

consequence due to an AR event. We do not distinguish between pluvial, fluvial, coastal, or91

indirect flood effects. The number of claims needed to qualify an AR event as damaging depends92

on the spatial resolution. At the census tract level, the threshold is one claim. At the county93

level, large differences in population between counties mean that more populous counties have94

more policyholders and are consequently more likely to have at least one claim filed somewhere95

in the county during the AR event; we therefore define the threshold as (𝑁𝑐𝑜𝑢𝑛𝑡𝑦)𝑖/𝑁𝑠𝑡𝑎𝑡𝑒, where96

(𝑁𝑐𝑜𝑢𝑛𝑡𝑦)𝑖 is the number of NFIP policies in county 𝑖 and 𝑁𝑠𝑡𝑎𝑡𝑒 is the statewide median of policies97

per county. This policy-based threshold corrects the population bias at the county level and more98

evenly distributes damaging events across the state.99

NFIP claims are often used as a proxy for flood impacts because claims are available at the100

census tract scale and tagged to a specific date of loss, which allows for a granular examination of101

flood impacts. Multiple other researchers have used NFIP claims to fit data-driven models of flood102

hazard (Mobley et al. 2021) and loss (Czajkowski et al. 2017; Knighton et al. 2020). However, NFIP103

policyholders are not a representative sample of California residents. Only about 2% of eligible104
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homeowners are insured (FEMA 2023b), and due to a combination of both self-selection within105

risky areas and the mandatory purchase requirement for homes with federally backed mortgages106

within the 100-year floodplain, NFIP policyholders are more likely than the general population to107

live in high-risk areas with a history of flooding (Bradt et al. 2021). Insurance take-up rates are also108

influenced by education (Atreya et al. 2015), community flood protection investment (Zahran et al.109

2009), and income and home value (Darlington and Yiannakoulias 2022), among other factors.110

Previous works have addressed the representation bias of the NFIP in a number of ways, from111

applying correction factors (Smith and Katz 2013; Corringham and Cayan 2019) to modeling112

damage at uninsured properties (Thomson et al. 2023). We address it here by limiting our analysis113

to classification rather than regression. Focusing on damage versus no-damage and neglecting114

claim payout values avoids issues arising from differences in coverage limits between policyholders115

within and outside of the 100-year floodplain, coverage limit changes over time, and concerns about116

overrepresentation of higher-valued properties. However, it means our results will only show the117

underlying drivers of damage probability, which may or may not be the same as drivers of damage118

magnitude (Rözer et al. 2019). There also still remain demographic and socioeconomic differences119

at the intra-county level between who is insured and who is not.120

Predictor Variables121

Table 1 lists all of the predictors in the model by risk dimension and by concept, where concepts122

represent groups of related variables. Table 1 also includes references to the data source for each123

variable as well as references that support that variable’s potential connection to the response.124

Spatial variation of the data is at the census tract scale or smaller (T), at the county scale (C), or125

constant (–). Temporal variation is at the event level (E), monthly (M), yearly (Y), or constant (–).126

We provide additional context around the variables chosen to represent each risk dimension,127

starting with hazard. Each record in our dataset represents one AR event. To identify ARs, we128

used the Rutz et al. (2014) algorithm, which defines ARs as contiguous areas greater than 2,000129

km in length and with integrated water transport (IVT) values over 250 kg/m/s. IVT was calculated130
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from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2;131

Gelaro et al. (2017)). MERRA-2 reports data at a resolution of 0.5◦ × 0.625◦ (∼50km × 50km)132

from 1980 to present. We recorded the maximum IVT and duration of each AR event and used133

the Ralph et al. (2019) scale to categorize the intensity of each AR from 1 (mostly beneficial) to 5134

(mostly hazardous). Antecedent conditions are measured with three variables: total precipitation in135

the 3 days prior to the AR event, total precipitation in the 14 days prior to the AR event, and average136

soil moisture over the 3 days prior to the AR event. Large-scale climate modes such as ENSO and137

PDO capture time periods when flood risk increases or decreases over a broad geographic range,138

and land surface variables capture on-the-ground conditions that can amplify storm effects.139

For exposure, we focus on variables related to population and housing. The large majority140

of NFIP policies cover residential buildings, so NFIP claims are more representative of housing141

exposure than other types of infrastructure. We do not measure other types of exposed assets such142

as roads, critical infrastructures, crops and livestock, and cultural heritage sites. We also include143

variables identifying specific geographies associated with higher NFIP insurance takeup rates.144

For social vulnerability, we rely on constructed indices, particularly the Centers for Disease145

Control (CDC) Social Vulnerability Index (SVI) (Flanagan et al. 2011) and CalEnviroScreen 4.0, a146

statewide screening tool for vulnerability to environmental hazards (August et al. 2021). The CDC147

SVI was chosen because of its long time record, with values extending back to 2000, and its ability148

to explain both recorded damages and fatalities in an empirical validation exercise (Bakkensen et al.149

2017). We included the four components of SVI (socioeconomic status, household characteristics,150

racial & ethnic minority status, and housing type & transportation) as separate predictor variables.151

The CalEnviroScreen metrics (population characteristics, pollution burden, and disadvantaged152

communities) were chosen because of their calibration to California, their relevance in statewide153

planning decisions, and their focus on environmental justice. One drawback of constructed indices,154

though, is that they are designed for comparison over space rather than over time. While the indices155

are updated regularly, each data generation is normalized such that the values at any given time156

represent only the relative ranking of one census tract or county, so the values do not necessarily157
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capture absolute changes in vulnerability over time (Bakkensen et al. 2017). Therefore we include158

median household income, percent of the population as non-Hispanic white, and percent of the159

population as working age (18–64) as standalone metrics of socioeconomic vulnerability common160

to many indices that have physical meaning. Note that while increasing index values signify161

increasing vulnerability, increases in these standalone metrics signify decreasing vulnerability.162

Infrastructural vulnerability, similar to exposure, includes metrics relevant to housing, such as163

building age and construction type. Lastly, we include two metrics of flood experience, number of164

federally declared disasters in the past three years and county-level participation in the Community165

Rating System (CRS) program. The CRS program is a mechanism to incentivize insurance uptake166

and increase community-level flood resilience through community-wide policy discounts offered167

in exchange for flood risk reduction actions. 70% of NFIP policyholders nationwide live in168

participating communities, and 26 out of California’s 58 counties have participated in the CRS at169

some point since its inception, with 24 of those counties still in the program today (FEMA 2023a).170

Spatiotemporal Resolution171

To analyze the effects of spatial and temporal resolution on predictive accuracy and model172

interpretability results, we fit RF models at two spatial and two temporal scales, for an overall173

total of four models. The two spatial scales are at the county-level across all of California and at174

the census tract-level across Sacramento County. Sacramento County was chosen because of its175

history of flood events (James and Singer 2008) and its significant investment in flood mitigation,176

particularly its commitment to the CRS program. The two temporal scales are 1981–2021 and177

2009–2021. While most hazard variables are available starting in 1981, many exposure and178

vulnerability variables are not available until later. For the models starting in 2009, the variables179

footnoted with (b) or (c) in Table 1 no longer require extrapolation beyond the range of their record180

and the variables footnoted with (d) are allowed to vary annually rather than remain constant.181

Nearly all of the hazard variables have higher temporal resolutions than the exposure and182

vulnerability variables, even in the 2009–2021 timeframe. Most hazard variables are recorded at183

the event scale, meaning that each record in the dataset will have different values based on the184
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characteristics (maximum IVT, 3-day antecedent soil moisture, etc.) of that particular AR event.185

The exposure and vulnerability variables, though, are recorded at the annual scale. This is logical186

in a physical sense; for example, the total number of housing units does not change day-to-day like187

the weather does. From a data perspective, though, this means that there is no intra-annual variation188

to exploit for the RF model, and RF models are known to preferentially split on features with higher189

variance (Strobl et al. 2007). The significantly higher resolution of the hazard data is analogous to190

the disproportionate focus on hazard in the physical model space (Merz et al. 2010). Nevertheless,191

comparison of the 1981–2021 and 2009–2021 models provides some insight into the usefulness of192

collecting additional exposure and vulnerability data for the earlier years in the historical record.193

METHODOLOGY194

Dataset Preparation195

We generated four datasets of AR events spanning the forty-year time period from 1981–2021.196

Each record included the AR characteristics of the event plus the additional hazard, exposure, and197

vulnerability variables documented for that specific time and place. If an AR passed over multiple198

geographic units, it was tabulated as multiple records (one per county/tract) in order to capture the199

effect of differences in exposure and vulnerability between different locations. Table 2 shows the200

total number of records in each of the four datasets.201

We sampled 80% of the data using stratified random sampling by county/tract for training and202

validation, reserving the remaining 20% to test the performance of the final model. Stratified random203

sampling ensures that there are counties (in the statewide model) or tracts (in the Sacramento model)204

the model has never seen before, which in turn ensures that the goodness-of-fit metrics calculated205

on the test set are more faithful representations of the model’s true performance. We then206

implemented the Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla et al. 2002) on207

the training data to fix the class imbalance in Table 2. With highly imbalanced classes, it is difficult208

to train an ML model that accurately captures damaging events; simply put, a naive model that209

predicts no damage every time would be correct approximately 95% (statewide models) or 99.5%210

(Sacramento models) of the time. SMOTE increases (oversamples) the number of records in the211
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minority class, in our case the damaging AR events, by creating synthetic records based on the212

distribution of historical events, and decreases (undersamples) the number of non-damaging AR213

events by a corresponding amount to achieve an even class balance. Combined over/undersampling214

on imbalanced data improves the predictive accuracy of ML models across a range of contexts (e.g.,215

Estabrooks et al. (2004)).216

After implementing SMOTE on the training set for each model, we performed feature selection217

to remove highly collinear variables. While feature collinearity does not affect the accuracy of RF218

models, it does adversely impact model interpretability, which is the main goal of this paper. We219

therefore first identified clusters of correlated variables using principal component analysis (PCA),220

then calculated the Akaike information criterion (AIC) of each variable in the cluster and kept only221

the ones with the highest predictive power. We repeated this two-step process of clustering and222

consolidating until the maximum variable inflation factor (VIF) fell below 10 and the maximum223

Pearson correlation coefficient fell below 0.8 (James et al. 2013). Despite the stochastic nature of224

the SMOTE algorithm, the clusters were very stable, and our process removed a consistent subset225

of the variables every time. Finally, we added one additional feature with uniform random noise,226

which serves as a check for our feature importance and impact analyses; if a given feature is less227

important than random noise, it is discarded.228

Model Training229

An RF model has three hyperparameters determined by the user: the number of trees in the230

forest, the depth of each tree, and the number of predictors selected to fit each tree. The number of231

trees in the forest was held constant at 𝑛 = 1, 000, consistent with other RF applications in similar232

contexts (e.g., Alipour et al. (2020)), and each tree was allowed to reach its maximum possible233

depth (1 data point at each leaf). The number of predictors selected to fit each tree was tuned234

between 1 and 10. We fit all models using 10-fold cross-validation, fitting the model on 90% of the235

training data and calculating accuracy metrics on the remaining 10%, then repeating that process236

across all the folds of the data. The best-fit model was chosen based on accuracy, which is the237

number of correct predictions divided by the total number of predictions.238
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Performance Evaluation239

We compared each of the fitted RF models against their respective withheld test sets. The test240

data had the same class imbalance as the original data, so we utilized three performance evaluation241

metrics appropriate for imbalanced data: area under the Receiver Operating Characteristic curve242

(ROC-AUC), area under the precision-recall curve (PR-AUC), and balanced accuracy. All three243

are derived from the confusion matrix, which summarizes the four potential outcomes for each244

prediction: true positive (𝑇𝑃), true negative (𝑇𝑁), false positive (𝐹𝑃), and false negative (𝐹𝑁).245

True positives and true negatives occur when the model correctly predicts a damaging or non-246

damaging AR event, respectively. False positives occur when the model incorrectly labels an AR247

as a damaging event, and false negatives occur when the model incorrectly labels an AR as a non-248

damaging event. From the confusion matrix, we derive secondary performance metrics, as shown in249

Equation 1. Precision measures correctly predicted positives out of all predicted positives. Recall,250

or sensitivity, measures correctly predicted positives out of all observed positives; the two names251

come from different disciplinary conventions, so we use both here in their respective contexts.252

Specificity measures correctly predicted negatives out of all observed negatives.253

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (1)254

Sensitivity and specificity together are used to plot the ROC curve (Fig. 1a), a scale-invariant255

model diagnostic frequently used for imbalanced data (Kotsiantis et al. 2006). Precision and recall256

together are used to plot the PR curve (Fig. 1b). PR curves have been put forward as an even257

more informative tool for imbalanced datasets (Saito and Rehmsmeier 2015). The plots in Figure 1258

measure the respective values of precision, recall (sensitivity), and specificity at varying detection259

thresholds for each of the four RF models. Model-optimized detection thresholds are marked with260

a dot. Finally, the balanced accuracy is defined as the average of sensitivity and specificity and261

calculated based on the model-optimized detection threshold. The values of the three metrics262

for each model are reported in Table 3. The fitted RFs at all spatial and temporal scales clearly263
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outperform the null models, signalling that they are far more informative about damaging events.264

MODEL INTERPRETATION265

SHapley Additive exPlanations (SHAP)266

We use SHapley Additive exPlanations (SHAP; Lundberg and Lee (2017)), which utilize267

Shapley values to assess local and global feature importance, for interpretation of our RF models.268

Shapley values are a game-theory approach for fairly apportioning a “prize” between multiple269

“players.” In the context of ML, the “players” are predictor variables and the “prize” is the difference270

between the overall mean prediction (expected value) and the prediction for a specific observation271

(observed value). SHAP conceptualizes the calculation of Shapley values as an additive feature272

attribution model and estimates the feature’s contribution to the difference between the expected273

and observed value for every record in the dataset. We prefer SHAP over other interpretable ML274

techniques for several reasons. First, it is the only method to satisfy the three statistical properties275

(local accuracy, missingness, and consistency) that are necessary and sufficient to ensure a fair276

apportionment of the overall contribution among the various predictors (Lundberg and Lee 2017).277

Second, it provides one coherent framework for examining both the magnitude and direction of278

a feature’s effect and for building from local to global importance (Molnar 2023). Many other279

interpretable ML methods only apply to one of these use cases, leading to an analysis that relies on280

unrelated tools with different baseline assumptions. Third, comparisons between SHAP and other281

interpretable ML techniques showed agreement at every step of the analysis.282

Feature Importance283

We first focus on global feature importance, which is calculated as the mean of the absolute value284

of SHAP values across all observations. Figure 2 shows the overall importance of features in each285

model, grouped by risk dimension and concept and normalized to a total of 100%. Across the four286

models, hazard features account for approximately 70% of the model’s predictive power, exposure287

features account for approximately 10%, and vulnerability features comprise the remaining 20%.288

The statewide 1981–2021 model is an outlier with higher-than-average exposure and vulnerability289
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contributions. Figure 2 also separates the risk dimensions by the concepts defined in Table 1. We290

notice some patterns; for example, social vulnerability is the most important vulnerability concept291

in the statewide models, and flood experience is more important in the 1981 models than the 2009292

models. Population exposure is the most important exposure concept in the Sacramento models,293

while housing exposure is more important in the statewide models. Factors affecting insurance294

takeup only appear as important in the 1981 models. The relative contributions of the hazard295

concepts are more stable across the spatial and temporal scales, but climate modes and land surface296

variables are slightly more important in the 2009 models.297

We move to comparing the rankings of individual features, noting common trends across all298

four models and exploring differences. In all cases, the top five predictors are related to the hazard299

dimension, mostly from either the AR characteristics concept or the antecedent conditions concept.300

Total precipitation and maximum IVT always occupy the top two positions, and total precipitation301

is the most important predictor in three out of four models. Lagged cumulative precipitation and302

lagged average soil moisture appear frequently, which highlights the important contribution of303

antecedent conditions to AR-driven flood risk in California. Two features related to exposure are304

noteworthy: percentage of the population living in the FEMA 100-year floodplain appears in the305

top ten in all four models, and total number of housing units appears in the top ten in both statewide306

models. For vulnerability, CRS score occupies the tenth position in the 1981 statewide model and307

median housing unit age occupies the tenth position in the 1981 Sacramento model. There are no308

features related to the vulnerability dimension in the top ten of either of the 2009 models.309

There are more noticeable shifts in feature rank across space than across time. While it is310

important in all cases, total precipitation has a larger SHAP feature contribution in the statewide311

models. The contributions are more evenly spread among the top five to ten features in the312

Sacramento models. AR category is more important in the 1981 models and ENSO climate index313

is more important in the 2009 models, but otherwise there are no clear temporal patterns. While314

our methodology does not necessarily allow for a direct comparison between the two, this may315

suggest that spatial scale has a larger effect on model results than temporal scale.316
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Feature Impact317

Feature impact plots visualize the direction and magnitude of a particular feature’s influence318

on the model’s prediction. We use accumulated local effects (ALE) curves (Apley and Zhu 2020)319

paired with SHAP values to analyze feature impact. The atomic unit of an ALE curve is the local320

effect, or the difference between the prediction at 𝑥 and the prediction at some perturbed value of 𝑥321

within a small interval 𝛿. ALEs are the sum of the local effects for all observations falling within322

𝑥 ± 𝛿, calculated for each 𝑥 in the feature domain. ALE curves show marginal contributions, not323

conditional contributions, so the effects of correlated features are not separated; however, they are324

more robust to collinearity than the more commonly used partial dependence plots (Stein et al.325

2021), so they are well suited for our analysis. We pair the ALE curves, which are average metrics,326

with random samples of 1,000 SHAP values from individual records. The SHAP values provide327

an understanding of the variance and show where the ALE curve is based on more or less data.328

Figures 4a–c plot the SHAP values and ALE curves for the top three hazard features in the329

1981 statewide model: total precipitation (4a), AR maximum IVT (4b), and AR duration (4c). The330

behavior of all of the hazard features follows a similar pattern, where probability of damage increases331

with increasing feature values until some threshold point. At a certain point, the magnitude of the332

hazard becomes so large that damage becomes the probable outcome. For total precipitation (Fig.333

4a), the threshold point is roughly 75mm, or approximately 15% of California’s mean annual total334

precipitation. The threshold point for maximum IVT (Fig. 4b) is about 750mm, which would be a335

Category 2–3 AR event, and the threshold point for AR duration (Fig. 4c) is about 30 hours.336

Figures 4d–f plot the SHAP values and ALE curves for the top three exposure features in337

the 1981 statewide model: total number of housing units (4d), percent population living in the338

FEMA 100-year floodplain (4e), and percent housing stock as single family homes (4f). The plot339

of total housing units (Fig. 4d) largely shows increasing probability of damage with increased340

housing stock. More people and more buildings at risk imply more chances for damage, so this341

matches intuitive reasoning. Less intuitive is the influence of the percent population living in the342

100-year floodplain (Fig. 4e). We would expect more people in the floodplain to increase the343
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likelihood of damage; instead, it appears to have a negative influence on damage probability. The344

distributions of the SHAP values in these panels provide more information about the discrepancy.345

Statewide, the median percent population in the floodplain is 8.1%, which means about half of all346

counties fall on the portion of the ALE curve in Figure 4b that is increasing. There could also be a347

confounding relationship with county-level flood resilience; the counties with the highest percentage348

of population living in the floodplain, say 20% or more, may be more prepared for flooding and thus349

less likely to sustain damage from an AR event. Another counterintuitive relationship is the negative350

influence of the percent of single family homes (Fig. 4f). NFIP policyholders disproportionately351

live in single family homes, so more of this housing type would mean more opportunity for claims.352

But residents of single family homes also tend to be more likely to invest in individual-level flood353

mitigation efforts, so the negative relationship might indicate that this particular feature is capturing354

more vulnerability than exposure. Percent single family homes is also negatively correlated with355

total population, so counties with higher percentages likely have fewer opportunities to submit356

insurance claims that would be recorded as damage.357

Figures 4g–i plot the SHAP values and ALE curves for the top three vulnerability features in358

the 1981 statewide model: CRS score (4g), median household income (4h), and CalEnviroScreen359

pollution burden score (4i). Lower numbers indicate more significant flood resilience investment.360

1 is the best possible score score and 10 means that a county has not engaged with the CRS. The361

perhaps-surprising trend of higher damage probabilities at CRS scores of 7–9 compared to those362

at a CRS score of 10 may be because counties with a history of damaging flood events are more363

likely to invest time and money into joining the CRS program. Multiple studies have found that364

CRS-participating counties and communities see significant reductions in flood loss (Highfield and365

Brody 2017; Gourevitch and Pinter 2023), and the SHAP values in Figure 4g suggest that achieving366

a CRS score of 6 or better does pay off in terms of flood risk reduction; however, Sacramento367

County is the only county in California that has achieved a rating of 4 or better, so scores beyond368

this point are not necessarily representative of the entire state. The median household income (Fig.369

4h) and the CalEnviroScreen pollution burden score (Fig. 4i), both measures of social vulnerability,370
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seem to indicate that the probability of damage decreases with increasing vulnerability. This may371

be indicative of limitations in the link between NFIP claims and damage sustained by all members372

of the population, suggesting that broad interpretations for flood risk should be made with caution.373

Further considerations for researchers using NFIP data are included in the Discussion.374

Feature Interactions375

Figure 5 plots interactions between hazard, as measured by the Ralph et al. (2019) intensity376

category, and exposure and vulnerability. In most cases, exposure and vulnerability variables377

become less useful predictors of damage likelihood as hazard intensity increases. Category 5 ARs378

have historically almost always caused some amount of damage (Corringham et al. 2019), so while379

exposure and vulnerability variables may still impact the severity of damage, they no longer have380

any influence on the probability. For example, in both the total number of housing units (Fig. 5a)381

and the percentage of housing stock as single-family homes (Fig. 5c), the observed trend is strongest382

for Category 1 events and weakest for Category 5 events, when probability of damage is elevated383

and individual-level characteristics are more likely to be overwhelmed by the severity of the hazard.384

The pattern flips, though, for CRS score (Fig. 5d) and median household income (Fig. 5e). The385

increase in probability of damage moving from a CRS score of 10 to 9 all but disappears for the386

largest ARs, and the benefit of improving a county’s CRS score from a 5 to a 4 or better increases387

with increasing intensity category. For median household income, there is a slight reduction in388

damage probability for the lowest incomes that only occurs at the highest hazard intensities. These389

figures do not provide a comprehensive list of the ways hazard, exposure, and vulnerability interact;390

rather, they illustrate examples of the kind of practically relevant insights from our RF models that391

can be used to help communities better understand their risk under different AR scenarios.392

DISCUSSION393

Benefits of Data-Driven Approach394

Through a combination of global feature importance, feature impact plots, and feature inter-395

actions, our RF models were able to identify new connections between the risk dimensions and396
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AR-driven flood damage in California. The global feature importance analysis showed that hazard397

features, individually and collectively, had the biggest influence on flood damage. This is not398

surprising; flooding and flood damage are far more likely to occur on rainy days than sunny days.399

An example of decision-relevant information related to hazard from our models are the nonlinear400

thresholds in the feature impact plots. If emergency managers are confident that flood damage is401

likely above a certain precipitation threshold, it reduces the information burden required to make402

a decision and allows for quicker mobilization of resources. Another example comes from the403

interaction plots: changes in exposure and vulnerability only affected damage probability during404

Category 5 events in one out of four features shown, so a well-rounded flood resilience strategy405

would include elements that decrease risk across the spectrum of potential hazards.406

We also showed that exposure and vulnerability explain up to a third of the model’s predictions.407

This finding has important implications from a management perspective because exposure and408

vulnerability can be altered at the community level more easily than hazard. The ALE-SHAP409

plots are therefore useful to understand the magnitude and direction of effects and to highlight410

overlooked risk factors for NFIP policyholders. For example, for the percent of the population411

living in the 100-year floodplain (Fig. 4e), probability of damage peaks at 5–10% before starting to412

decrease. Values in this range might indicate potential risk hotspots, where hazard is high enough413

to cause damage but not high enough that counties have significantly invested in resilience efforts,414

and identify a subset of counties that are worthy of more in-depth local analysis.415

Geographic Representation416

While random forests and interpretable ML methods are powerful tools for combining disparate417

data sources and extracting insights, the results of the models are only as good as the data used418

to train, fit, and validate them. We discuss two key limitations of this work, which stem from419

the assumption that NFIP claims accurately represent total losses from floods and relate to (a)420

geographic and (b) socioeconomic differences in insurance takeup rates.421

First, there are significant inter-county differences in NFIP takeup rates, ranging from almost422

0% in Mariposa County to over 18% in Sutter County. We compare observed versus expected423
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takeup rate (see Appendix I) to identify counties with anomalously high or low numbers of NFIP424

policies-in-force. Sutter, Yuba, and Sacramento Counties all have more policies than expected.425

All three border the Sacramento River, which has an extensive history of severe floods, and all426

three have invested heavily in the CRS program: Yuba County has a score of 6 (top 30% of all427

participating communities), Sutter County has a score of 5 (top 13%), and Sacramento County428

has a score of 2 (top 0.5%) (FEMA 2023a). One of the activities that garners CRS points is429

public advertisement of the NFIP, and better community ratings lead to higher policy discounts,430

so CRS participation has likely increased the number of policies in these areas. Joining the CRS431

also requires significant upfront investment, so it is more widely adopted in the communities and432

counties that can afford to participate (Sadiq et al. 2020). On the other hand, Alpine, Mariposa,433

Tuolumne, and Imperial Counties are rural counties with relatively low populations, and all have434

60 or fewer policies-in-force in 2021. The low number of policies mean that even if a flood event435

does cause damage or loss, it is less likely to lead to a NFIP insurance claim and therefore less436

likely to be labeled as damaging event in our dataset. Future work could use the expected takeup437

rates calculated here and determine the appropriate county-level correction factors to account for438

differences in takeup rates that cannot be attributed to real differences in flood hazard.439

Socioeconomic Representation440

In addition to the unequal representation of different counties, the demographic and socioe-441

conomic characteristics of NFIP policyholders contribute to representativeness issues. The most442

socioeconomically vulnerable populations are typically most affected by floods and other disasters443

(e.g., Debbage (2019)), but there are several intersectional factors affecting vulnerable populations444

that simultaneously reduce the likelihood of NFIP participation and exacerbate flood risk. As445

one example, renters are particularly vulnerable to negative consequences from flooding (Heiman446

2022). People of color are more likely to be renters, and renters tend to have lower incomes than447

homeowners (ACS 2023b). However, 80% of NFIP policyholders are single-family homeowners.448

While the NFIP does offer policies for renters, renters are often unaware that standard renter’s449

insurance does not cover flood damage, and in many places landlords are not required to disclose450
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an apartment’s history of flooding (Heiman 2022). Therefore renters are likely underrepresented451

in NFIP claims data, meaning that if there are factors specific to renters that affect flood risk, they452

will not be identified as important by our model. Using a different dataset than the NFIP as the453

response variable, such as remote sensing imagery (Szczyrba et al. 2021) or post-event surveys454

(Merz et al. 2013), could improve the representation of renters and other vulnerable populations.455

The predictor variables used in this study could also be enhanced through interviews or community-456

specific knowledge to better capture unaccounted-for resilience characteristics (Ismail-Zadeh et al.457

2017). Lastly, using ML techniques to move from county- or state-level summary statistics to maps458

of spatially varying hazard, exposure, and vulnerability would be of great benefit for future flood459

mitigation investment decisions.460

CONCLUSION461

In this paper, we used interpretable machine learning (ML) tools to understand how the three462

dimensions of risk, hazard, exposure, and vulnerability, relate to AR-induced flood damage in463

California. We collected a large dataset of over forty predictor variables to quantify the contributions464

of each the three dimensions to the probability of flood damage, as measured using flood insurance465

claims from the National Flood Insurance Program (NFIP). We considered two spatial resolutions466

for the data: the county scale, modeled for all of California, and the census tract scale, modeled for467

Sacramento County. We also considered timescales of 1981–2021, using exposure and vulnerability468

data with limited temporal variation, and 2009–2021, using exposure and vulnerability data at an469

annual resolution. This produced a total of four random forest classification models, each of470

which detected true positives (AR events with NFIP claims) with a high level of accuracy in very471

imbalanced datasets.472

We showed the power of interpretable ML to identify and investigate drivers of AR-driven473

flood risk given publicly available hazard, exposure, and vulnerability data. We gained insight474

into damage drivers by examining feature importance (how much does a given feature influence475

the model’s predictions?) and feature impact (how does increasing or decreasing the value of the476

feature affect the response?) using SHapley Additive exPlanations (SHAP) as a unifying framework.477
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While hazard intensity features were the most important predictors of whether an AR would cause478

damage, exposure and vulnerability contributed up to a third of the model’s explanatory power,479

and the overall relative contributions by risk dimension and risk concept broadly agreed across the480

spatial and temporal scales considered. Total precipitation was the most important predictor in481

three out of four models, and features related to the intensity of the hazard consistently represented482

the majority of the top ten. An analysis of feature impact for the top three hazard features in483

the county-level (statewide) model fit on data from 1981 onward revealed that increasing hazard484

severity increased the probability of flood damage, up to some threshold point. Above that threshold,485

probability of damage reached a saturation point where it was no longer sensitive to changes in486

precipitation; at a certain point, it became not a question of if damage will occur, but how much.487

In most cases, increasing exposure and vulnerability also increased the probability of damage,488

although the interpretation differed slightly depending on the specific feature under consideration.489

The physically plausible explanations of the data-driven outputs from SHAP and other interpretable490

ML tools support our confidence that the model is characterizing real drivers of flood risk.491

We also illustrated the ramifications of the assumptions made to fit our RF models utilizing492

available data. Changes in the spatial and temporal resolution of the input data altered the ranking493

of which features were deemed significant in the analysis of global feature importance. The higher494

temporal scale of hazard data relative to the other risk dimensions and the differences in NFIP495

representativeness across geographic and socioeconomic boundaries were noted as limitations. We496

proposed avenues for future work that would mitigate these limitations and potentially uncover new497

pathways to increased resilience. Overall, our work highlights both the possibilities and pitfalls of498

using interpretable ML for flood risk assessment. It enhances our understanding of the relation-499

ship between individual AR events and their negative effects and broadens the discussion around500

AR-driven flood damage to include more explicit characterization of exposure and vulnerability.501

Understanding the drivers of damage improves our ability to predict and prepare for the impacts of502

ARs, today and in the future.503

19



Data Availability Statement504

All data used in this study is publicly available, and all code created to generate results is505

available in a Github repository (Bowers 2023). In particular, the datasets described in Table 1506

are available as downloadable CSV files, the reproduce_figures.html markdown file recreates all507
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APPENDIX I. CALCULATION OF NFIP TAKEUP RATE BY COUNTY519

We calculated the observed and expected number of NFIP policies and insurance takeup rates520

for each county in California to determine which counties had more or fewer policies than predicted.521

Observed numbers of policies were calculated based on 2021 policies-in-force (FEMA 2023b), and522

observed takeup rates were calculated as the number of policies divided by the number of 2021523

housing units in each county.524

The expected numbers of policies and takeup rates were calculated as follows. We categorized525

both NFIP policies and housing units as either within-floodplain or out-of-floodplain based on the526

FEMA National Flood Hazard Layer (NFHL). NFIP policies were determined to be in or out of the527

floodplain by the NFHL flood zone code included in the policy information. Housing units were528

determined to be in or out of the floodplain by finding the percentage of each census block group529

that overlapped with a NFHL spatial polygon, then dividing the housing units in that block group530

assuming an even distribution in space. For example, if 40% of a block group was covered by the531

NFHL, then 40% of the housing units were labeled as in-floodplain (𝐻𝑈𝑖𝑛) and 60% were labeled as532

out-of-floodplain (𝐻𝑈𝑜𝑢𝑡). We summed all policies and housing units to estimate statewide within-533

floodplain and out-of-floodplain insurance takeup rates. The 2021 statewide within-floodplain534

takeup rate was found to be 12.6% and the 2021 statewide out-of-floodplain takeup rate was found535

to be 0.69%. The expected number of policies by county was then calculated by aggregating over536

all block groups in that county, as illustrated in Equation 2. Lastly, county-level expected takeup537

rates were found by dividing the expected number of policies by the total number of housing units538

in each county.539

Expected Policies =
∑︁

𝑏𝑔 ∈
{
all block
groups

} 0.126 ∗ (𝐻𝑈𝑖𝑛)𝑏𝑔 + 0.0069 ∗ (𝐻𝑈𝑜𝑢𝑡)𝑏𝑔 (2)540
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Fig. 1. Model performance metrics for the four RF models. The spatial scale is represented

by color, where Sacramento is blue and statewide is gold; the temporal scale is represented

by shading, where darker indicates 1981–2021 and lighter indicates 2009–2021. (a) Receiver

Operating Characteristic (ROC) curves. A perfect model would reach the top-left corner of the

plot. The solid lines are the results for the respective models at different detection thresholds

between 0 and 1, and the points on the curves indicate the sensitivity and specificity of the model-

optimized detection threshold. The dashed black line represents the ROC of random guessing. (b)

Precision-recall (PR) curves. A perfect model would reach the top-right corner of the plot. The

solid lines are the results for the respective models at different detection thresholds between 0 and

1, and the points on the curves indicate the precision and recall of the model-optimized detection

threshold. The dashed lines represent the precision of the null models that predict no damage for

all records. The precision is constant and equal to the class imbalance ratio of the test data.
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Fig. 2. SHAP relative global feature importance by risk dimension and concept. Relative global

feature importance is shown for both spatial resolutions (statewide and Sacramento County) and

both temporal resolutions (1981–2021 and 2009–2021). The color represents the risk dimension,

and the bolded percentages indicate the overall contribution of that risk dimension to the overall

model performance. The shading, labeled on the right-hand side of the plot, represents the risk

concept as defined in Table 1. Feature-level SHAP importance estimates are normalized so that the

total for each model sums to 100%.
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Fig. 3. SHAP feature importance rank. Featured are colored by their global SHAP feature

contribution in each model, where the global SHAP feature contribution is calculated as the mean

of all observation-level SHAP values. For example, a SHAP feature contribution of 5% means that

the value of that feature increases or decreases the probability of damage by 5% on average. The

top ten features with the largest SHAP feature contributions in each model are labeled with their

rank. Features without shaded bars were either removed during feature selection or had smaller

global SHAP values than the random noise variable. The H/E/V labels along the left side of the

plot indicate whether each feature is related to the hazard, exposure, or vulnerability dimension.
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Fig. 4. Top three hazard, exposure, and vulnerability features in the 1981 statewide model.

The top three most important hazard features are (a) total precipitation, (b) AR maximum IVT,

and (c) AR duration. The top three most important exposure features are (d) total housing units,

(e) percent of the population living in the 100-year floodplain, and (f) percent of the housing stock

as single family homes. The top three most important vulnerability features are (g) CRS score,

(h) median household income, and (i) CalEnviroScreen pollution burden score. The left and right

Y-axes represent the change in damage probability relative to the average probability of damage.

Black lines represent ALE curves that show the average trend between predictor and response;

ALE curves are plotted over the middle 95% of the data to reduce the visual impact of outliers.

Gray points represent SHAP values for 1,000 individual observations randomly sampled from the

training set.
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Fig. 5. Interactions between AR category and exposure and vulnerability features in the 1981

statewide model. Exposure features are (a) total housing units, (b) percent of the population living

in the 100-year floodplain, and (c) percent of housing stock as single-family homes. Vulnerability

features are (d) CalEnviroScreen Pollution Burden score, (e) median household income, and (f)

CRS score. ARs of different categories are colored based on the legend at the bottom. The tick

marks along the bottom of each panel indicate the distribution of values for that feature. ALE

curves are plotted over 95% of the data to reduce the impact of outliers, and lines are plotted with

a smoothing factor to reduce visual clutter.
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TABLE 1. Predictor variables. This table includes variables that were retained through feature

selection in at least one of the four models. Variables are grouped by risk dimension and variable

concept. Spatial resolution is at the county scale (C), census tract scale (T), or constant (–).

Temporal resolution is by event (E), monthly (M), annual (A), or constant (–). The Data Source

column lists a citation where data for the variable can be retrieved, the Justification column lists a

citation supporting the variable’s inclusion in the model.

Risk Di-
mension Concept Variable Spa-

tial
Tem-
poral Data Source Justification

Hazard AR char-
acteristics Maximum IVT (kg/m/s) Ta E Gelaro et al.

(2017)
Corringham et al.
(2019)

Duration (hours) Ta E Rutz et al. (2014) Corringham et al.
(2019)

AR category Ta E Ralph et al.
(2019)

Corringham et al.
(2019)

Total precipitation (mm) Ta E Gelaro et al.
(2017)

Brunner et al.
(2018)

An-
tecedent
conditions

3- & 14-day total
precipitation prior to
AR event (mm)

Ta E Gelaro et al.
(2017)

Woldemeskel and
Sharma (2016)

3-day mean soil moisture
prior to AR event
(mm/m)

T E Erlingis et al.
(2021) Cao et al. (2020)

Climate
modes

El Niño Southern
Oscillation (ENSO) – M NOAA (a) Corringham and

Cayan (2019)
Pacific Decadal

Oscillation (PDO) – M NOAA (b) DeFlorio et al.
(2013)

Land
surface

Impervious land cover
(%) T Yc Dewitz and

USGS (2021) Blum et al. (2020)

Developed land cover
(%) T Yc Dewitz and

USGS (2021) Brody et al. (2013)

Wetlands land cover (%) T Yc Dewitz and
USGS (2021)

Highfield et al.
(2018)

Expo-
sure Population Population density per

square mile Tb Y PEP (2023) Jonkman (2005)

Population within FEMA
floodplain (%) T – FEMA (2020) Sanders et al.

(2022)

Housing Housing units Tb Y PEP (2023) Willis et al. (2016)
Single-family homes (%) T –d ACS (2023a) Rufat et al. (2015)
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Risk Di-
mension Concept Variable Spa-

tial
Tem-
poral Data Source Justification

Insurance
takeup

Riverside census tract
indicator T – USGS (2023) Kousky (2011)

Coastal county indicator C – USGS (2023) Kousky (2011)

Vulnera-
bility

Socioeco-
nomic CDC SVI components T Yc CDC (2022) Bakkensen et al.

(2017)

CalEnviroScreen metrics T – August et al.
(2021)

Bergstrand et al.
(2015)

Median household
income (2022 dollars) Tb Y ACS (2023a) Cutter (2016)

Non-Hispanic white
population (%) Tb Y ACS (2023b) Cutter (2016)

Working-age population
(%) Tb Y ACS (2023b) Cutter (2016)

Infrastruc-
tural

Housing units over 40
years old (%) T –d ACS (2023a) Highfield et al.

(2014)
Median housing age

(years) T –d ACS (2023a) Knighton et al.
(2020)

Owner-occupied housing
units (%) T –d ACS (2023a) Rufat et al. (2015)

Mobile homes (%) T –d ACS (2023a) Tate et al. (2021)

Flood
experience

3-year lagged total
disaster declarations C Y FEMA (2023b) Bakkensen et al.

(2017)
Community Rating

System (CRS) score C Y FEMA (2023a) Highfield and
Brody (2017)

a Values are aggregated to the tract/county level from MERRA-2 (∼50×50 km grid cells) (Gelaro et al. 2017).
b Pre-2000 tract-level estimates are based on a weighted distribution of county/statewide values, where weights are

determined as a function of the distribution of tract values in 2000.
c Data is only available starting from 2000 (for the CDC SVI) or 2001 (for the land surface variables), so for prior

years the values are equal to those recorded in the earliest year of data.
d Data is only available starting from 2009, so these are considered to be temporally constant in the 1981–2021 models

and annually varying in the 2009–2021 models.
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TABLE 2. Dataset statistics by spatial and temporal scale.

Spatial
Scale

Temporal
Scale

Number of
Records

Damaging
Records

Class
Balance

Statewide 1981–2021 17,265 863 5.0%
Statewide 2009–2021 5,659 234 4.1%

Sacramento 1981–2021 145,977 874 0.60%
Sacramento 2009–2021 47,776 114 0.24%
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TABLE 3. Random forest model performance metrics. Fitted model performance (RF) is com-

pared against null model performance (Null) for each model and each metric under consideration.

Spatial
Resolution

Temporal
Resolution

ROC-AUC PR-AUC Balanced Accuracy
RF Null RF Null RF Null

Statewide 1981–2021 0.914 0.500 0.435 0.051 0.707 0.500
Statewide 2009–2021 0.914 0.500 0.353 0.041 0.658 0.500

Sacramento 1981–2021 0.959 0.500 0.311 0.007 0.761 0.500
Sacramento 2009–2021 0.898 0.500 0.046 0.002 0.702 0.500
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